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Abstract

Good visual quality is of great 
importance in tempered glass. Roller 
waves and other deformations are 
formed easily in the glass during 
the tempering process. In order 
to understand the formation of 
deformations, a theoretical model is 
needed. The influence of heat transfer, 
rollers, and processing parameters such 
as velocities and oscillation during the 
heating period can be studied using a 
theoretical model. Some examples of 
glass behavior during the heating period 
at high temperatures are presented in 
the paper. From the examples, the great 
influence of temperature and time on 
visual quality can be seen. 

Introduction

Tempered glass is a very common 
building material. Many façades or 
windows are made from tempered glass 
because of its good strength. Usually 
those glasses are located in visible places 
and customers want tempered glass 
to have good visual quality. Tempering 
quality, like strength of glass, is usually 
high. In addition to tempering quality 
also visual aspects are becoming more 
and more important, although stresses 
are still the most important factor in 
considering the quality of tempered 
glass. There can be different kinds of 
visual faults in the glass. Some visual 
faults are caused by uneven heat 
transfer and some are caused by too 
high a process temperature. Some 
examples of visual faults are shown in 
Figs. 1-3. Some of those visual faults can 
be avoided by proper control of heat 
transfer. This paper concentrates on the 
formation of roller wave deformations.

In a glass tempering furnace the 
temperature of glass plate is over 600 
°C at the end of the heating period. 
Thus, the relaxation time is so short 
that plastic deformations are produced 
and they are non-reversible. If the 
deformations are large enough, it is 
possible to see different reflections from 
the glass surface. In Fig. 4 the reflection 
of a vertical grid from a glass plate 
is seen and waves can be detected. 
Especially, they can be seen at the edges 
if a hot glass plate has been in the 
same position for a long time. During 

oscillations the movement of the glass 
plate is stopped many times for a short 
period of time. Plastic deformations 
are formed in a hot glass during that 
time if the glass is not supported. All 
changes on the glass surface show up 
as distortions. 

Glass tempering and theoretical 
fundamentals of tempering stresses 
have been published in many papers [1-
4]. Deformations of tempered glass have 
been much discussed and experimental 
results are available [5]. However, 
there are no studies dealing with the 
theoretical aspects of the origin of roller 
waves.

The aim of this paper is to present a 
theoretical background for deformations 
of tempered glass. In addition, this 
paper discusses what happens in 
the tempering process and why the 
deformations are produced, and the 
paper offers reasons explaining these 
phenomena. In this paper, the results 
of heat transfer during the tempering 
process have been ignored because they 
can be found in the literature [6-8]. 

Theoretical background for 
deformation

In a glass tempering process strains 
are produced by the change of the 
temperature field and the body forces. 
When glass temperature is high, glass 
is a viscous material and creeping 
phenomena occur. Creeping creates 
permanent plastic deformations in glass. 

In taking temperature change into 
account the thermal strain εth is given by
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In this equation the factor of strain is the relaxation function G(t), which describes how stress changes as a 
function of time with a constant strain ε. Because strains can change and relaxation is time- and 
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Formed strains can be separated into deviatoric and hydrostatic parts [10] 
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b = ρg (2)

Figure 5 

Maxwell model

Glass is a viscoelastic material. At low 
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elastic because viscous effect is very 
slow. When the temperature exceeds 
the transition temperature, the influence 
of viscous behavior increases. The 
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be described using the Maxwell model, 
in which a spring and dashpot are in 
series, as shown in Fig. 5. In the model, 
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dashpot is for viscous behavior. General 
constitutive equation for the Maxwell 
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When the stresses are separated 
according to Eq. (7), the stress response 
to corresponding strain can be written 
as 
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The time-dependence of relaxation with the generalized Maxwell model for the shear modulus G1(t) and bulk 
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In the equations above, G0 is initial shear modulus, K0 initial bulk modulus, and K∞ final bulk modulus. The 
moduli above are related to the Young modulus E and the Poisson ratio ν by equations 
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Terms τ1i and τ2i are relaxation times of each Prony component of the shear modulus and the bulk modulus, 
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in which ηi is viscosity. 
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where H is the energy of activation and R is the perfect gas constant. 
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The fictive temperature Tf can be calculated from Eq. (16) and it describes the difference from equilibrium 
state. In the calculation of the fictive temperature the whole thermal history has to be taken into account 
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where H is the energy of activation and R is the perfect gas constant. 
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The fictive temperature Tf can be calculated from Eq. (16) and it describes the difference from equilibrium 
state. In the calculation of the fictive temperature the whole thermal history has to be taken into account 
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The response function Mp(t) can be described by analogy with viscous relaxation as 
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The structural relaxation time λi is temperature-dependent and is analogous to the stress relaxation time in 
Eq. (13). When glass is not stabilized, the shift function of the relaxation time depends on the actual 
temperature and fictive temperature  
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The shift function Eq. (19) should be used during tempering both for stress and structural relaxation. In Eq. 
(19) the term x is a constant which depends on the material. 
 
The thermal expansion coefficient depends on actual and fictive temperatures. Because the thermal 
expansion coefficient of a liquid glass αl is about three times greater than the thermal expansion coefficient 
of a solid glass αs, the change must be taken into account during tempering. The thermal strain equation 
depends on the difference between actual temperature and fictive temperature [1] 
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Heat transfer 
 
In a tempering process, the temperature field should also be known. Temperature distribution is calculated 
from the energy equation 
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Heat is transferred from the surface by convection. On the surfaces, is the boundary condition for the energy 
equation 
 

( )∞−=
∂
∂−= TTh
x
Tkq s
i

 (22) 

 
There can exist also radiation in the glass, but in this study that phenomenon has been ignored as its effect 
is small. 
  
Modeling results 
 
The commercial FE software ANSYS was used to solve the temperature field as well as stress and 
deformation fields. Thermal strains and relaxation times are connected to the temperature field. Calculation 
of the temperature field is based on the energy equation (Eq. (21)). Stress and deformation field calculations 
are based on the theory above. The governing equation of a viscoelastic material with thermal strains is [11] 
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where λ and μ are Lamé constants 
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The shift function Eq. (19) should be used during tempering both for stress and structural relaxation. In Eq. 
(19) the term x is a constant which depends on the material. 
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temperature and fictive temperature  
 

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−−=
fref T
x

T
x

TR
HTa 11)(ln  (19) 
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Heat is transferred from the surface by convection. On the surfaces, is the boundary condition for the energy 
equation 
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are connected to the temperature field. 
Calculation of the temperature field is 
based on the energy equation (Eq. (21)). 
Stress and deformation field calculations 
are based on the theory above. The 
governing equation of a viscoelastic 
material with thermal strains is [11]
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The response function Mp(t) can be described by analogy with viscous relaxation as 
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The structural relaxation time λi is temperature-dependent and is analogous to the stress relaxation time in 
Eq. (13). When glass is not stabilized, the shift function of the relaxation time depends on the actual 
temperature and fictive temperature  
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The shift function Eq. (19) should be used during tempering both for stress and structural relaxation. In Eq. 
(19) the term x is a constant which depends on the material. 
 
The thermal expansion coefficient depends on actual and fictive temperatures. Because the thermal 
expansion coefficient of a liquid glass αl is about three times greater than the thermal expansion coefficient 
of a solid glass αs, the change must be taken into account during tempering. The thermal strain equation 
depends on the difference between actual temperature and fictive temperature [1] 
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Heat transfer 
 
In a tempering process, the temperature field should also be known. Temperature distribution is calculated 
from the energy equation 
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Heat is transferred from the surface by convection. On the surfaces, is the boundary condition for the energy 
equation 
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There can exist also radiation in the glass, but in this study that phenomenon has been ignored as its effect 
is small. 
  
Modeling results 
 
The commercial FE software ANSYS was used to solve the temperature field as well as stress and 
deformation fields. Thermal strains and relaxation times are connected to the temperature field. Calculation 
of the temperature field is based on the energy equation (Eq. (21)). Stress and deformation field calculations 
are based on the theory above. The governing equation of a viscoelastic material with thermal strains is [11] 
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where λ and μ are Lamé constants 
 

where λ and µ are Lamé constants
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Reference values of material properties and their temperature-dependency are given in Table 1. Constants 
for glass stress and structural relaxation curves at the reference temperature (Tref = 869 K) are given in Table 
2. They were taken from the article of Daudeville and Carré [1]. These material values are typical for soda-
lime glass. 
 
Table 1 Material properties 
 
Table 2 Characteristics of shear and volume moduli and response function for structural part (Tref = 869 K) 
 
The main reason for glass deformation is high temperature. Glass relaxation time decreases when the glass 
temperature rises above the glass transition temperature (about 550 °C). At the same time, the creeping 
velocity increases. In Fig. 7 is shown how glass temperature affects the bending of a freely supported 
cantilever glass beam in Fig. 6 after one second.  
 
 
 
Figure 6 Cantilever beam, L = 10 cm, t = 4 mm 
 
 
 
Figure 7 Effect of temperature on deformation of point 1 in cantilever beam 
 
The longer the glass is at high temperature the more it creeps. The case of a roller-supported glass is shown 
in Fig. 8. 
 
 
Figure 8 Roller-supported glass 
 
In the case where a hot glass is on the rollers, the deformations between the rollers and free edge are 
different, depending on the type of glass support. A free edge usually bends more than the rest of the glass. 
The degree of bend depends on the length of free edge. If the free edge is short, the section of glass next to 
the free edge has more effect and the free edge rises. Usually deformations of free edges have a 
determining influence on deformations of the entire glass plate. Deformations of a stationary glass plate on 
rollers are shown in Fig. 9. Glass thickness is 4 mm, length 1 m, temperature 630 °C, distance between 
rollers (a) 120 mm and distance between the left edge and the first roller (b) 60 mm. In the initial state, glass 
has only elastic deformation and after that glass creeps from the initial state. The influence of the free edge 
can be seen in both ends. If the length of the free end is longer, the plate bends much more. In this case the 
length of free edge is 60 mm at the left end and 100 mm at the right end. At the same time as that free edge 
drops, glass rises in the next gap due to the free edge. The free edge has minor influence in the center 
section of glass plate. 
 
 
 
Figure 9 Glass deformation of stationary plate on rollers. Glass thickness 4 mm, length 1 m,  
temperature 630 °C. 
 
 
 
Figure 10 Glass deformation of stationary plate on rollers. Adjustment of graph in Fig. 9, showing 
deformations between supports.  
 
Usually during the tempering process the glass plate is in motion. In that case lengths of free edges change 
with time and affect differently the rest of the plate. How deformations of a glass plate change with time is 
shown in Fig. 11. In this example the glass thickness is 4 mm, length 0.75 m, temperature 630 °C, distance 
between rollers (b) 120 mm, and distance between the left edge and the first roller (a) 20 mm at the initial 
state. Glass velocity is 500 mm/s. At the time 0 s glass has only elastic deformations. During the motion 

 
Reference values of material properties 
and their temperature-dependency are 
given in Table 1. Constants for glass 
stress and structural relaxation curves 
at the reference temperature (Tref = 869 
K) are given in Table 2. They were taken 
from the article of Daudeville and Carré 
[1]. These material values are typical for 
soda-lime glass.

The main reason for glass 
deformation is high temperature. Glass (11)
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relaxation time decreases when the 
glass temperature rises above the glass 
transition temperature (about 550 °C). 
At the same time, the creeping velocity 
increases. In Fig. 7 is shown how glass 
temperature affects the bending of a 
freely supported cantilever glass beam in 
Fig. 6 after one second. 

The longer the glass is at high 
temperature the more it creeps. The 
case of a roller-supported glass is shown 
in Fig. 8.

In the case where a hot glass is on 
the rollers, the deformations between 
the rollers and free edge are different, 
depending on the type of glass support. 
A free edge usually bends more than 
the rest of the glass. The degree of bend 
depends on the length of free edge. 
If the free edge is short, the section of 
glass next to the free edge has more 
effect and the free edge rises. Usually 
deformations of free edges have a 
determining influence on deformations 
of the entire glass plate. Deformations 
of a stationary glass plate on rollers are 
shown in Fig. 9. Glass thickness is 4 
mm, length 1 m, temperature 630 °C, 
distance between rollers (a) 120 mm 
and distance between the left edge and 
the first roller (b) 60 mm. In the initial 
state, glass has only elastic deformation 
and after that glass creeps from the 
initial state. The influence of the free 
edge can be seen in both ends. If the 
length of the free end is longer, the 
plate bends much more. In this case the 
length of free edge is 60 mm at the left 
end and 100 mm at the right end. At 
the same time as that free edge drops, 
glass rises in the next gap due to the 
free edge. The free edge has minor 
influence in the center section of glass 
plate.

Usually during the tempering process 
the glass plate is in motion. In that case 
lengths of free edges change with time 

Young modulus E = 70 GPa

Poisson ratio ν = 0.22

Thermal expansion coefficient for solid glass αs = 9∙10-6 1/K

Thermal expansion coefficient for liquid glass αl = 25∙10-6 1/K

Thermal conductivity k = 0.975 + 8.58∙10-4 T W/mK ,where T in °C

Specific heat for liquid glass (T>Tg = 850 K) cp,l = 1433 + 6.5∙10-3 T J/kgK 
,where T in K

Specific heat for solid glass (T≤Tg = 850 K) cp,s = 893 + 0.4 T – 1.8∙10-7/T2 J/kgK 
,where T in K

Ratio H/R = 55000 K

Constant x = 0.5

Density ρ = 2530 kg/m3

Table 1 

Material properties

Deviatoric part Hydrostatic part (K∞/K0 
= 0.3) Structural part

w1i τ1i w2i τ2i Ci λi

0.0552 6.658∙10-5 0.0222 5.009∙10-5 0.05523 5.965∙10-5

0.0821 1.197∙10-3 0.0224 9.945∙10-4 0.08205 1.077∙10-2

0.1215 1.514∙10-2 0.0286 2.022∙10-3 0.1215 0.1362

0.2286 0.1672 0.2137 1.925∙10-2 0.2286 1.505

0.286 0.7497 0.394 0.1199 0.2860 6.747

0.2266 3.292 0.3191 2.033 0.2265 29.63

Table 2 

Characteristics of shear and volume moduli and response function for 
structural part (Tref = 869 K)

Figure 6 

Cantilever beam, L = 10 cm, t = 4 mm

Figure 7 

Effect of temeprature on 
deformation of point 1 in 
cantilever beam

Figure 8 

Roller-supported glass

Figure 9 

Glass deformation of sta-
tionary plate on rollers. 
Glass thickness 4 mm, 
length 1 m, temperature 
630 °C.
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and affect differently the rest of the 
plate. How deformations of a glass plate 
change with time is shown in Fig. 11. 
In this example the glass thickness is 4 
mm, length 0.75 m, temperature 630 
°C, distance between rollers (b) 120 
mm, and distance between the left edge 
and the first roller (a) 20 mm at the 
initial state. Glass velocity is 500 mm/s. 
At the time 0 s glass has only elastic 
deformations. During the motion glass 
deforms. After six seconds glass is in a 
similar position as to the rollers and the 
difference between the initial state (only 
elastic deformations) and the new state 
(elastic and creeping deformations) can 
be seen.

Results from the same case as above 
are shown in Fig. 12. In that figure is 
shown what happens to glass when 
it moves over one gap. During the 
motion, the free edge of glass changes 
with time. The discontinuity of the edge 
motion occurs when it rises with the 
roller or drops from it. After the glass 
has moved for some time, it can be seen 
that the edge bends all the time down. 
The results show that the prediction 
of wave length and amplitude is quite 
difficult.   

Conclusion

In the glass tempering process 
deformations are formed because of the 
rollers and the mass of glass. Hot glass 
is a viscous material and stress relaxation 
occurs. The hotter the glass the more 
viscous it is. Hotter glass makes the 
tempering quality better, but at the 
same time deformations increase and 
visual quality suffers. When the glass 
temperature is under the transition 
temperature, plastic deformations do 
not form and mechanical tempering is 
impossible.

High temperature glass creeps 
during its motion. The shape of 
deformed glass depends on the 
velocity-time distribution of the glass. 
Oscillation and velocity changes affect 
deformations. Also the roller distance 
influences on deformations. They are 
not much affected by quenching. 
When symmetrical, quenching has not 
much influence on the shape of frozen 
glass. In general, quenching starts in 
different places as glass goes forward. 
This may have some slight affect on 
deformations. A bow shape can form 
with asymmetric quenching. 

Numerical modeling can be used in 
seeking to understand the behavior of 
glass deformations. Deformations of 
tempered glass can be measured, but 
what happens during the motion of 
the glass and because of temperature 
cannot be measured. There numerical 
modeling provides good assistance. 
In numerical solution there are also 
difficulties due to rollers. When the 
edge of glass rises with the roller or 
drops from it, there is a discontinuity of 
the edge displacement. 

Although there exist a theory of 
viscoelastic behavior of glass, values 

Figure 10 

Glass deformation of sta-
tionary plate on rollers. 
Adjustment of graph in 
Fig. 9, showing deforma-
tions between supports. 

. 

Figure 11 

Elastic deformations 
(time 0 s) and deforma-
tions of glass in motion 
after 6 s. 

Figure 12 

Glass deformations over 
one roller gap. 

of material properties and other 
parameters are hard to measure. 
Consequently, only the influence of 
modeling parameters on the results can 
be determined. 
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